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OUTLINE OF LECTURES

o Lecture # 1

1. Contrast differences between the finite dimensional minimization problem,

minp S(IB), p= (1317 <o NBP)T € R?
pelR

(where IRP is the usual p-dimensional Euclidean space),
and the infinite dimensional minimization problem

mip $(¢), ¢=g¢(t)€F

(where F' is a “function space”).

2. Methods for solving the minimization problem require computing S’(8) (for the
finite dimensional problem), or S’(q) (for the infinite dimensional problem).
(a) Computation of S'(§) ‘
1. Sensitivify equations
~ ii. Matrix transpose (or adjoint)
(b) Computation of S'(¢)
1. Sensitivity equations

ii. Operator adjoint.
o Lecture # 2

1. Methods for minimizing S(3) (the finite dimensional problem):

(a) Solving necessary condition equations, S'(8) = 0.
(b) Descent Methods for minimizing S(3) (these methods also use the derivative
5'(8)).
i. Steepest Descent Method
ii. Conjugate Gradient Method




¢ Lecture # 3

1. Methods for solving the infinite dimensional problem are generalizations of those
required for the finite dimensional problem. The derivative S’(q) is used in all
methods.

2. Implementation of Descent Methods for the infinite dimensional minimization
problem, using both sensitivity equations and adjoint equations.

3. Implementation of Descent Methods when regularization is present.
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Lecture #1

Example: Inverse Heat Conduction Problem

Consider the following partial differential equation for heat conduction (no radiation or
convection): B i e

wier o {
8T 8 (0T W
CW a (ka_l’), 0<t<tmax, 0_<$<L (I\\/;\'\Uw\
T(z,0) = To(z) . 5
kTi|le=r = f(t) (known boundary condition)

—kTgle=0 = ¢(t) (unknown boundary condition)

Here T = T(z,t;q) denotes temperature, corresponding to a particular value of the
unknown function ¢; the remaining entities, p = density, ¢ = specific heat, ,and k = thermal
conductivity, are assumed to be known functions of z and ¢. . ;

Without loss of generality, we will take To(z) = 0 and f(¢) = 0; that 1s, T solves

oT 0 ory . .. g
c—a—t— = 8m<k5—>’ 0<t<tmax, O<z<L’
T(z,0) = 0
‘ kTgle=r = _0
—kTle=0 = q(2).

These equations will be called the IHCP (inverse heat conduction problem) equations.

We will assume that there is one sensor located at position z = d, 0 < z < L, for
which temperature observations Y; (corresponding to T(a:-—d t;q)) are avallable at tlmes t;,
0<t; <tmax,forz—l 2,.

Estimation of ¢ = ¢(2)

Ideal situation: Find ¢(¢) such that _
Yi=T(d,t;q), i=1,...,n.

Realistic situation: Because we do not expect.to exactly match the model solution 7'
to measured data, we instead attempt to find q(t) such that gml}g%u,mzeﬁ the “fit- to—data

: 3 fg%tﬁ B ,3 ‘ 0 o

criterion” IR 1y v':“ﬁ\g Vo by
: 1 n | TS
Slg) = = Y Tdt,,q
=== i q bt 32; Piprieh
s WE ( 2 ,q)) (Y = T(d,9))
where Y = (Y, .. and T&d, ,q) ( (d tl,q) ., T(d, tn; @) are vectors in R™ and
“T” denotes “transpose e n¢€e tha,t .many other fif:to- d‘aitamcntema_. (e g, Maxunum ‘

Likelihood, etc.) may be used 45t he sme‘thods discussed. beloyw. @
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Finite dimensional vs infinite dimensional minimization problems:

We will characterize the dimensionality of the minimization problem according to the dimen-
sion of the “parameter space” over which the minimization occurs. For example, suppose we
assume an a priori representation for the unknown function ¢(t), such as:

o (polynomial representation)
q(t) = o+ Bt + Bt + ... + Bpt™

o (exponential representation)

q(t) = Pre + Bae®' + ... Bpo1e”

o (step-function representation)
q(t)=B; fortin <t<t, i1=1,...,p,

'Whereo=to<t;_<...<tp_1<tp=tmaxa
L .
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may

e (or, a general linear representation),

q(t) = B1fi(t) + Bafo(t) + ... + Bofr(2),

where fi(t),..., f,(t) are known, fixed functions of .

54-«1*3 -funchan P«‘QLWSL Vinear SG;QJ:M—Qs
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t .
We note that, with the exception of the exponential representation for g, each of these

representations has the property that the resulting function ¢ is linear in the parameters

:31’/3%‘ .o )i@p'

In each of the above cases, the unknown function ¢ has been parametrized in such a way
that we are no longer minimizing over all possible functions ¢, but rather are minimizing
over all possible constants By, B3, . .., Bp. The “parameter space” is then p-dimensional, with
unknown “parameters” given by the p-dimensional vectors of form 8 = (81,02,...,0p)" in
IR?. The corresponding minimization problem becomes :
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and is considered a finite dimensional problem. s( (5') N

gi b= ( B @PBT
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@4%' 7y Be) subsetof R
In contrast, the infinite dimensional minimization problem occurs when we do not select

an a prior: parametrization for the unknown function ¢. For example, we might consider ¢
as belonging to a more general “function space” F', where

F = L0, tmax)

= all “square integrable functions” defined on [0, tzr;.ax]
tmax )
= {q(t)satisfying / (¢(¢))*dt < oo}.
, 0 .

We would then minimize over this entire function space, an infinite dimensional space.
The minimization then becomes

1 n
min S(g) = min {— Z Y; = T(d, t; q)|2} ,
g in L(0, tmax) q in L2(0, tmax) 24

an infinite dimensional minimization problem.

To facilitate subsequent calculations, we will assume (for the infinite dimensional case
only) that we have “infinite observations” (i.e., measurements Y (¢) are available for all ¢ in
(0, tmax)), and that the minimization problem is given by the generalization

. . 1 thX 2
min S(g) = min {—/ Y (t) — T(d,t;q)| dt} .
g in L3(0, tmax) g in L3(0, tmax) 270
S(g)
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Remarks Concerning Finite Dimensional vs Infinite Dimensional Minimization
Problems

1. Instability: We know for finite dimensional problems that, as p (the number of pa-
rameters) increases, the inverse problem becomes more unstable and some type of
regularization scheme must be invoked. Similarly, in the infinite dimensional problem
(where we are essentially letting p go to infinity), it is not at all surprising that such
problems are also often very “ill-posed”, requiring regularization.

2. Linearity: Because the unknown function ¢ appears as a boundary condition in the
IHCP equations, the calculations that follow are greatly simplified. This is due to the
fact that the solution T to the IHCP equations is linear in ¢; that is, from the principle
of linear superposition, we know that T'(t,z; ag: + vq2) = oT'(t,z;q1) + vYT' (¢, z; ¢2)
where T(z,t; ¢;) is the solution to the IHCP equations with boundary condition g; at
z=01for:=1,2.

Similarly, for the finite dimensional problem, if a linear representation is chosen for q,
such as the general form

q(t) = Brfa(t) + Bafo(t) + ... + Bpfo(t),

it then follows that the solution to the ITHCP equations is linear in f; in fact, for
T(z,t; B) the solution to the IHCP equation with this ¢ appearing in the z = 0 bound-
ary condition,

oT 0 (,0T
pc_é—t— = —a;(ka—x), 0<t<tma.X7 0<fL'<L
T'(z,0) = 0
kalz:L = 0

—kTile=0 = B1fi(t) + Bofo(t) + ... + Bofp(t),
we have that this solution satisfies

T(.’I),t; ,3) = ﬂlT(xat; fl) +et ﬂPT(‘T"’t; fp)a

where T'(z, t; fi) satisfies the IHCP equations with boundary condition fi(t) at z = 0:

pcaa—:: = %(lz?—f), 0<t<tmax, 0<z<L
T(z,0). = 0
kTzle= = 0
—KTylpmo =

."Ml a WGA@M; g(—)uvv\.z/(%qn
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In fact, for a given 83, the predicted temperature T' at measurement location z = d and

times ¢;, ¢ = 1,...,n, may be written as

T(da tl; ,3)
T(d1 t2; ﬂ)

T(da K ﬂ)

Il

T(d, Un; ﬁ)

T(d, ts; fl)
T(da t2; fl)

T(d, tn; f1)

XB,

ﬁlT(d’ tl; fl) +- ﬂpT(d) tl; fp) \
,BlT(d, to; fl) ot ﬂpT(da t2; fp)

ﬂlT(d, tn; fl) +0 4 ﬂpT(da tn; fp)

T(d,t1; fp) (51 \
T(d, ts; fp) B2

T(d, tn; fo) )\ Bo ) - DW\/\’ es:kkwjr/\)

where X is the n X p constant-valued matrix (“sensitivity matrix”) of solutions to the
IHCP equations for given times t; and given (known) boundary conditions fi(¢).

The linearity of T in ¢ will be useful in what follows. We note however that a similar

theory holds for the case when T is not linear in the unknown parameter, as occurs for

example in the case of unknown coefficients &, ¢, and p.

3. “Quadratic” Fit-to-Data Criterion: Because T is linear in ¢, it is easy to see that
the “fit-to-data” criterion S(g) (for the infinite dimensional problem),

$ D=3

t) - d t; ‘Z)|2 dt;

is “quadratic” in ¢ and that S(B8) (for the finite dimensional proBIem),

A A

S(8) =
¥

| = D] = l\Dlr—l

znj Y; — T(d, t; B))?
- T(d, y ,B))T (Y - T(da S IB))

= 5= XB)" (Y - XB)

is “quadratic” in 8. This fact will be important when descent methods are discussed.




Finite dimensional parameter space = IR?

Infinite dimensional parameter space = L3(0, tmay)

“Product” of L3(0, tmax)-functions ¢(t)

JW&\&\\ “Product” of RP-vectors 3, B: , d(1):
56 (8,8)=B"p (g,d) = Jom=q(t)q(t) dt
= E?:l :BiBi
~ T ()
@ 2 S
D — C>—:_ /\\fﬁf /L\?/
_:' : I i ; f
S(a)
T —
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Computation of the Derivatives S'(3), S'(q)

" Schemes to minimize S(f8) (or S(g)) typically require one or more calculations of the
derivative of S with respect to the unknown parameter; i.e., S’(8) is required for the finite
dimensional problem, and S’(g) for the infinite dimensional problem.

First (Standard) Computation of S'(8): (finite dimensional problem)

In the finite dimensional case, the derivative is just the usual gradient of 5,

, 89S oS s\’
S'(B)=v,5 = (8,31’5,32’“"8,3) .
Thus, for .
S(8) = 5(¥ — XB)T(Y ~ XB)
we have |

56) = o,[v-XB)7 (v -xB)]_ dim g™

= W@ -x8)T| ¥ -xp

= —XT[Y - Xf]

o g oy seoohiywetex

On the other hand, for the infinite dimensibnal problem, the derivative S’(¢) denotes

the derivative of S with respect to a function ¢; although the correct interpretation of this
derivative requires a good deal more mathematics (and thus its calculation is considerably
more complex), we can at least attempt a formal understanding of S’(g) as a generalization
of a standard derivative. '

Second Computation of S/(8): (for which S'(¢) is a generalization:)

Recall, from Taylor Series theory, that if A is a (sufficiently smooth) real-valued function
of z, then for Az in R,

h(z+Az) —h(z)= K(z) Az + %h”(x)~Am2+....

linear in Az

>

terms nonlinear in Az




Similarly, for 8 in IR?, and AB in IR?, the “directional derivative of S at 8 in the direction of AB”
is given by D, ,S(8), which satisfies

S(B+AB)—5(B) = PMS(,E) + (terms nonlinear in AS)

inIR linear in ApB R
=directional g{g,re —>
derivative = direchons)

{
{
where each term in the above expréssionis"a real number. derivadire S (' 1 %
, j———» F5A
A

To calculate this directional derivative, we compute S(8+ AB)—S(B ) and drop all ferms
which are nonlinear in Ap:

S(B+08)-S(B) = 2 (¥ —X(B+AB)T (¥~ X(B+A8))— 5 (¥ ~ XB)T (¥ — XP)
(I — XB) ~ XAB)T (I¥ ~ XB] ~ XAP) — = (¥ — XB)T (¥ — Xp)

(Y = XB)T (~XAB)+ 5 (~XAB)T(Y — XB) + 5(~XAB)T(~XAp).

NN =D =

But (Y — X8)" (—XAp) belongs to IR so
(¥ = XB)T (~XAB = (Y XB)T (-xA8). | ey D
Thus, ‘
S(8-+ 86) ~ S(6) = (¥ — XB) (~XAB)+ £(~XAB)T(~XAP) .

-

term linear in Af term nonlinear in AB
Therefore, the needed directional derivative is the linear term in the Taylor expansion, or
B W D e ——

D,,5(8) = (Y — XB)T (—XAB).
(Compare this with S’(8) = v/,S found earlier, S'(8) = =X (Y — X5).)

Remark: We note that we could have used the fact that T'(d,; 8) = XS to rewrite the
above as

(Y - T(dv ';IB+ AIB))T (Y - T(d1 ‘§ﬂ + AIB))

5 (¥ = T(&58)7 (¥ = T(d, ;)

= SY - T(d’ ) IB))T(_DAﬁT(d’ t)))
term linear in AB

_‘DAﬁT(d7 t))T(—DAﬂT(d7 t)) :

SB+A8)-5(6) = 5

1
5(

-

+

term nonlinear in A

8




We thus have that the directional derivative of S at B in the direction of Af is given, as

~above, by :
D, S(B) = (Y — XB)" (—XAp)
or, equivalently,

D,,5() = (¥ = T(d,38))" (~D,,, T(d, ).

residual directional
derivative

of T at #

In this case, D,,T(d,t) = XAp is interpreted as the directional derivative of T at § in the
direction of AB. In fact, D,,T(z,t) = 0(z,t,; AB), where 0 satisfies the sensitivity equations

06 a (,00
- a t < tmax,
P oy 6z(k0m)’ O0<t< O<z< L
6(z,0) = 0
kOzle=r, = 0

Question: How do we use the directional derivative D ,,S(B) to find the ordinary derivative
S'(B)?

We recall that in IR?, the directional derivative of any function f(5) at § in the direction
of (a unit vector) AS is always given by

D,.f(B) Y;v/) (AB).

ori e W\”&‘w ‘

Therefore, for the function S(8), :
| DLS(6) = (7,56)( o W
(VsS(B) Aﬂ éﬁt u}wb
————r’

,
vector the
in IR? unit
= S'(B) direction

where (-, -) is the IR scalar product.




Using this fact to “recover” S'(8) = v, S from D,,S5(8), we have, from above,

D,x5(8)

(¥ —T(d, s f))T | =D, T(d 1)
= (-XT(¥ ~T(4,6)) AB
= (<XT(V-T(@,8), 4B ).

“derivative” “direction”

It thus follows that S/() = —XT (Y — T(d,-; 8)).
Summary of steps to find D,,5(3) and S'(B):

o Compute S(8 + AB) — S(B) and drop terms nonlinear in ApB. What remains is the
directional derivative D ,,5(B). '

o Rewrite the directional derivative as

D,,S(B) = (“vector”)TAp
= (“vector”, AB).

Once this is done, we identify:
S'(B) = “vector”.

Thus, the directional derivative is rewritten

D,p5(8)

(Y - T(da ] ,3)) _DAﬂT(d’ t)

_x AB

-~

= (201058 (A
’

= <\__\)’(_Z(Y - T(d7 " IB))aA:B>7

and

§'(8) = ~XT (Y ~T(d,; ).

10




Calculations required in order to compute S’(3) for the IHCP, given a value of 3:

To compute, for given 8 = (f1,...,5),
S'(B) = -X" (Y = T(d, s )
the following steps are taken:

e Solve the JHCP equations with the given § for the vector
N T W

T(d,; 8) = (T(d,t1; ), T(d, 12, B), .., T(d, tn; B)),

where T'(d, t;; ) is the solution at z = d, t = t;, of:

ot Oz

pca—T = %(ka—T), 0<t<itmax, O0<z<L
T(z,0) = 0
0

szlz:L -
—kTslo=0 = Pufi(t) + Bafa(t) + ... + Bpfo(2).

Compute the residual vector Y — T'(d,-; B).
/\-\-f—\./\/\’/\__/\—‘\//'\/

o Multiply the matriz transpose (or matriz adjoint) of X times the residual Y —T'(d, -; £).
Here X is the “sensitivity matrix”,

T(d,ty; f1) - - - T(d,t;;fp)
T(d,ty; 1) - - - T(d,t2fp)
X = . . . ,
T(d7 tn; fl) ot T(d, Un; fp) /
and the entry T'(d, ¢; fx) is the solution 0(z,t; fx) at z=d d, t = =1, of the “sensitivity
equations” T
pcgg = 9 80 , 0 <t< tnax 0<x<L
ot 6m 0 w
0(z,0) = “\'

k0 omrs
@,'”;_ fk@ /

11
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Similar steps are taken to find the (infinite dimensional) directional derivative,

D,,S(q), and the (infinite dimensional) ordinary derivative, $'(q):

e Compute S(g + Ag) — S(g) (where ¢ and Aq are given functions in Ly (0, tmax)) and

drop terms nonlinear in Agq. What remains is the directional derivative D, S(q).

Just as in the finite dimensional case, we compute

S+ 80 -S@) = & (V)T Ha+A0) V() - T(d g+ Ag) d

[3

- -5 3\t)+bz/
Z)%Zt)

- sihge=D.S6) L [T - T 5 0) (V) - Ty t50) d
1 b7 / Y () = T(d, & 9))(— D, T(d, 1)) dt

o

i

i o .
term linear in Agq

" % [ (~Do T, 0)(~Da (6, ) dt,

-

term nonlinear in Agq

where D, T(d,t) is interpreted, as before, to be the directional derivative of T" at ¢ in
the direction of Ag. As before, D,,T'(z,t) satisfles the sensitivity equations in g,

pcgé—? = i(ka—g>, 0 <1< tmax, AO<a:<L 2

ot Oz \ Oz
f(z,0) = 0 Slaams: Sense

M-/(}Léz/b@

kbzlz= = 0
@=0 = Agq(?) " (the “directiW

7&) ;\f——» %(‘t)f’bslt)

We thus find, for the infinite dlmensmna.l case, that the directional derwatwe of S at
q in the direction of the function Agq is given by

tmax
D,,5(a)= [ 7Y (8) - T(d,t0)) (D, T(d,))
h ” directional
derivative
of T at ¢

residual

12




e For the finite dimensional case, the next step in finding the derivative S'(8) was to

rewrite

and identify

D,,S(q) = (“vector”, AB)

= (“vector”)TAB

S'(B) = “vector”.

In the infinite dimensional case, similar steps are required:

D,,5(q)

= (“function of ¢, Aq)
tmax

/ (“function of t”)Aq(t) dt.
0 .

Once this is done, we identify the derivative

But in the finite dimensional case, the “separation” of Af from the directional deriva-

tive D,,T'(d, t) was easy:

D,s5(8)

S'(g) = “function of t”.

(Y - T(da g ﬂ))T _DAﬁT(d’ t)
=—XAB

(-1

o

5'(8)

Things are not so straightforward in the infinite dimensional case. For this case,

DAqS(q) = /Ot

max

(Y()-T(d50)| -D. T2 | d
—_———
# “matrix”-Agq

and that we cannot simply separate (via matrix transpose) the Ag from 7”s directional

_derivative D, T'(d,t). However, we can (via several integration b

function of t which makes the needed equality hold, namely,

D,,S(q)

Il

[ ) = T, 0)(~ Do T, ) dt

tmax
/ (“function of t”) - Ag(t) dt.
0

13
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This function can be shown to be the solution 1, evaluated at z = 0, of the following
“adjoint equations:” :

o, . _ 8
-8—t(cp1)b) = _5§(k5§) 0<t<tmax, 0<z<L .

1/’(37’ tmax) = 0 SZ\
k¢z|z=L =0 — \[ ’W

_k"pxlz:O = 0

W0 = p(d1) = 0 VWF "

- (30132 n) = Y0-Tng

We note that the adjoint equations are solved backwards in time and have two jump
conditions imposed at the “interface” z = d; the solution 9 of this system of equations
is driven by the error Y (¢) — T'(d, t; ¢) between measurements and model for a given

value of g. t [ <o
_6/}‘\“){ / I s /‘ //
Yeo—> //i/uf;#e{-ﬁce Yoo
b / |
0 ) L%
For comparison with the adjoint equations, we recall the original IHCP equations:
c%—f = ai(k?—f), 0<t<tmax, 0<z<L
T(z,0) = 0
kTzlz=z = O
—kTe|a=0 = Q(t)-

Thus, for the infinite dimensional case, the derivative of S(g) is given by

Sl(q) = 7/’]3:0 )

a function of ¢.

14




Summary of calculations required in order to compute 5'(q) for a given value of ¢:

¢ Solve the IHCP equations, with the given ¢, for the function T'(d, ¢; ¢):

caa—j; = %(k%—i), 0<t<tmax, 0<z<L
T(z,0) = 0
kTyplz=z = 0
—kTs)z=0 = ¢(2)

Compute the residual error function Y (t) — T(d, t; q) corresponding to g.

o Compute the solution ¥(z,t; ¢) of the adjoint equations:

%(vaj)) = —;9%( g—f) 0<t<tmax, O0<z<lL
Y(z, tmax) 0o
klpz':c:l}. = 0 KQ” ’ZJJ/
"‘kd)x]z—o = 0
P(d*, ) P(d,t) = 0
o - _ :
- (s -13ka0) = YO-T@60),
¢ The derivative S(g) (a function of t) is given by S'(¢) = ¥|z=0. N, \ﬁ
C ,050\TX
{Mﬁ
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Lecture #2

Minimization Techniques: Necessary Conditions and Descent Methods

We will first consider the general problem of minimizing S(3) over B in IR?.

First Approach: Necessary Conditions for a Minimum.

Solve:
S'(B) =0,
or
o 0
: =1 : 1,
n 0
a set of p equations in the p unknowns fi,..., B, Solving this system for the 8; may be

difficult, especially if these equations are nonlinear in the B;. A numerical method (such as
Newton’s Method, or another iterative method) may be used, generating a sequence

B%BY, .. B

where each 3" belongs to IR? for all n, and the IRP-vector 3° is a (user-supplied) initial guess.

Result for Newton’s Method: Convergence of {#"} is guaranteed if 8° is “close” to
a local minimum £*.




Second Approach: Descent Methods. These are also iterative techniques. Again,
starting with an initial guess 8%, a sequence of iterates 8,..., 8", ... is generated in a manner
determined by the particular descent method used.

General Approach for Descent Methods:
IDEA.: Starting with 3°, pick the sequence £, f,. .. such that

SBY =258 =28()>...288M=>....

We note that this property of “descent of S” is not guaranteed by Newton’s method.

I AT Y '
g0 " ‘pT\,S(@o)-wW: B inside thix, £>0

Method: Start with a guess, 4% Then, the (n + 1)t iterate is given by

Bl ="+ a™p" n=0,1,...,
where
e (3" is the last iterate
e p" is a particular “direction” vector in IR?
e " is a real number chosen such that
S(B)z 5B +a"p").
gt
Method for choosing p":
o If p" = —(gradient) = —S’(f"™), this is the Steepest Descent Method.

e If p» = “orthogonal” (or “conjugate”), in a certain sense, to p°, pt, ..., p*1, (and p°
is the initial gradient —S’(3°)), this is the Conjugate Gradient Method.

Result for Descent Method: Convergence of {#"} to a local minimum /3* is guaran-
teed, for any initial guess 3°.

NOTE: Both methods are especially suited for quadratic problems (that is, when S is
quadratic in 3); in this case, the formulas are easy and the theory straightforward. A similar
“local theory” is also possible in the case where S is not quadratic in S.
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Method of Steepest Descent:
1. Pick an initial guess, 3°, for 8 in IR?. Set n = 0.
2. Calculate /(™) = 7,5(B") in RP. Set

pt=— v,sS(IBn)

3. Calculate o™ which satisfies the necessary condition for S(8™ + ap™) to be minimized

at a: p

where 8™ and p" are given in previous steps.

4. Set
,Bn+1 — ,Bn _I_ anpn_

5. If || B+ — B™ ||Re < €, stop. Otherwise, set n =n + 1 and go to step #2.

(Note: S must be “well-behaved” in order to guarantee our ability to perform the above.
steps; ideally, S is “nearly quadratic” and convex. Otherwise, some sort of positivity is
needed for the matrix S”(f).)

Implementation of Steepest Descent for S(8) = 3(Y —T(d,;8))"(Y — T(d,; B)):

e Selection of p™: We have already looked at the computation of S'(8) = 7,5(f) for
the finite dimensional problem. For the Method of Steepest Descent, then,

Pt = “Vﬁs(ﬂn)
- XT(¥ - Xp")
= X' (Y -T(d,;8)-

o Selection of o™: We find that value of @ which minimizes S(8" + ap™) (recall that
B™ and p" have already been given). That is, we find a such that

0 = %S(ﬂ”+ap")
= L - X o) (V- X(" 4 ep)

= (=Xp")T (Y - X(B" + op™))

or a™ solves

(XY (¥ = XB7) = (~Xp")Ta"(~Xp")




(Xpm)T(Xp)
)7 [XT (¥ — xp57)]

(Xp)T(Xp)
(P")7 (")
(Xp)T(Xp")

)f

Under (reasonable) conditions on the original minimization problem, we have the folloW-
ing result for the Method of Steepest Descent:
Theorem: For any starting point 3°, the sequence of iterates

13071817'.",1871‘,"‘

converges to a minimizer of S(B) which closest to B°. If the minimum is unique, 8™ converges
to the unique minimum [3*.

Remark: Not surprisingly, the speed of this convergence depends on:
e location of §°,

e how non-circular the level curves are, e.g., eccentricity of the level-curve ellipses if in

R?).

Further, if the level curves are circles (in IR?), we get convergence in one step regardless of
the location of 3°.

wg\,‘\,& "6




Conjugate Gradient Method: This method constructs a sequence of “orthogonal”
or “conjugate” (in a certain sense) direction vectors p° p!,...,p", ... . The “stepsizes”
aly...,a",... are selected based on a particular Fourier series expansion.

IDEA: In some sense, the conjugate gradient method is based on the idea that IR?, with
the usual IR? scalar product, may not be the right “space” in which to minimize S(3), since
the level curves of S(B) in this space may not be circular. In conjugate gradient, a new
scalar product is used that amounts to a coordinate transformation of IR?; implementation
of this coordinate transformation takes at most p — 1 steps, the resulting coordinate system

~ being such that the level curves of S(8) are now circular. It then takes one step to get the
minimum of S (for a total of p steps).

Thus, the Method of Conjugate Gradients, though slightly more complicated to imple-
ment, generally converges much faster than the Method of Steepest Descent.

/SC(B’Uﬁ>> S(@l)ﬁz)

7 1 coordiinade —
f Foone Ssrmotyou ‘

s | ' ) /B/
///-)‘_';7(?:: ' s F .
W N\
qufj& Qere! canrvme s @:. N~ >  Qused
2 . [EIL
Es: R? case, S(p) MJQ

Formulas for p” and «”, in the case of the Conjugate Gradient Method:

1. Pick an initial guess 3° Set n =0

2. Define the scalar y™:

= 0 (ifn=0)

. (SN SE - S

[ EGEIE (it > 0)

S8 [S'(6™) — §'(5)]
Sl(ﬂn—l)TS’/(IBn—l)

3. Define the direction p™:

P = =5(8% (ifn=0)
Cpt o= =SB+ (ifn > 0).




4. Define the stepsize o™:

n o (5'(8"),p")
|1 Dp=T'(d, )]

(S0P
(Xp™)T(Xp)
5. Set fntl = " + a™p".

6. If || 8™ — 8™ |||gr < ¢, stop. Otherwise, set n =n + 1 and go to step #2.




Lecture #3

Implementation of Descent Methods
for the
Infinite Dimensional Minimization Problem:

min S(q)
q in LQ(O, tmax)

S(Z)




Implementation of Descent Methods
for the

Infinite Dimensional Minimization Problem: Method of Steepest Descent for:

. min S(q).
g 11l L2(Oytmax)

Steps: -

1.

Pick an initial guess ¢°(¢) in L3(0,%max). For example, ¢°(¢) = 0, 0 < ¢ < tmax. Set
n = 0.

Calculate S’(¢") and define the n*® “direction function” p™(t) (p" is alsoin Ly (0, tmax)),

pn — __Sl(qn).

Calculate o™ which satisfies the necessary condition for S(¢™ + ap™) to be minimized
at a:

d
—S(q" ") =0,
—5(¢" + ap”)

where ¢™ and p" are given in previous steps. For the IHCP,

N
DT (d, P

«

where || - || denotes the Ly(0, tmax) norm. That is,

n Jemex |pn(2) ]2 dt

a® = .

 Jo™ Dy T (d, B2 dt”

Set
g (t) = ¢"(t) + a"p"(t), 0 <t < tmaxe

CIf

tma.x
[+ =gt = [Tl - P de < 2,

stop. Otherwise, set n =n + 1 and go to step #2.




Implementation of Method of Steepest Descent to minimize S(g) for THCP:

tmax
min S = min Y(t) =T d,t; zdt.
q in LQ(OvtmaX) (Q) q in Lz(O,tmax) /0 I ( ) ( q)|

1. Pick an initial guess, ¢°(%) in Ly(0, tmax). Set n = 0.

. 2. Calculation of p*(t): (p™(t) = —S'(¢™))

(a) First solve the original IHCP equations forward in time for the temperature

T(z,tq"):
oT 0 oT
pCW = 8_x(ka_a)->, O<t<tmax, 0<$<L
T(z,0) = 0
kTa;Ia::L = 0

—kTyle=0 = q™(t) (use current ¢")

(b) Compute the residual (measurement/model error) function corresponding to the
current ¢™(t):
Y(t) - T(da t; qn), 0 <t < tmax

(c) Now solve the adjoint equations, backward in time, for ¥ (z,; ¢"):

%(Cpfgb) = —(%(kg—f) 0<t<tmax, 0<z<L
Y(Z,tmax) = 0
k"pz'z:L = 0
—ktzle=0 = 0
p(d,t) —p(d™,1) = 0

_< %‘zﬁ(d{r,t)_ g—f(d‘,t)) = Y(t) - T(d,t;q").

Note that the solution 7 at the current step is driven by the current residual
Y (t) — T(d,t; ¢™), i.e., the error between measurements and model associated
with the current iterate ¢"(¢).

Set
p(t) = =S"(¢")(t) = =¥(0,4¢"), 0<?< tmae
(Note that p"(t) is a function in L3(0, tmax)-)




3. Calculate o™ (a™ = ||p™|?/|| D T'(d, -)||?)-

(a) First compute

2 tma.x 2
| 7* 2= /0 1460, £ ™) 2 dt.

(b) Solve the sensitivity equations for 8(z,t; p") (forward in time):

00 0 00
pcm = -a;<ka—m>, O0<t<tmax, O0<z<lL
6(z,0) = 0
kam|x=L = 0

= —(0,¢;¢") (adjoint variable)

(c) Then, D,nT'(d,t) = 6(d,t; p™) and
2 fmax ny(2
1D (d, )" = [ Io(d, 57 P
Set o™ = [|p"||/| DpnT'(d, -) |-
4. The next (functional) g-iterate is given by

¢"(t) = ¢"(t) + a"p"(t), 0 <t < timaxe

5. If || g™t — ¢ ||2 = f§== [¢"(2) — ¢"(¢)|? dt < €%, stop. Otherwise, set n =n + 1 and
go to step #2.




Note: For each updated ¢™t'(t), we must first solve three partial differential equations.
Because of the forward-backward-forward nature of the three sets of equations, they cannot
be solved simultaneously. '

Question: In implementing these “infinite dimensional schemes” on a computer, don’t we
have to discretize? That is, doesn’t the problem again become finite dimensional?

Making the assumption that the actual “real world” problem is the infinite dimensional
one, namely,

1 [tmax
min S(g) = min {—/ Y () — T(d, ¢ q)? dt} .
g in L3(0, tmax) g in L2(0, tmax) 2Jo

there are two approaches that we have discussed:

e Discretize first, optimize later (usual approach)

o Optimize first, discretize later (“adjoint equation” approach)

Are the two approaches equivalent?




Discretize first, optimize later

e Discretize ¢ via an a prior: parameter-
ization.

e Minimization problem is

min _S(B).
g in R? (8)
o Pick Descent Method;

i.e., make initial guess 3° and determine
formulas for ™ and p" in the iteration
scheme
ﬂn+1 — an + C\{npn.
These formulas require S'(8™).

e To compute S’(8") for each n:

— Solve (via approximation technique,
e.g. finite difference method) the
IHCP equations forward in time
for approzimate TM(z,t; B™).

— Multiply (—XT) times the resid-
ual [Y -~ TM(d, ,3”)]

o Update g™t = B" + a™p", and con-
tinue.

Optimize first, discretize later

¢ Minimization problem is

Cmin ()
g 1 Ly (O,tma.x)

o Pick Descent Method; i.e., make initial
guess ¢°(t) and determine formulas for
o™ and p" in the iteration
() = () + (D).

These formulas require S’(¢™).

e To compute S'(¢™) for each n:¥

— Solve (via approximation technique,
e.g. finite difference method) the
IHCP equations forward in time
for approzimate T™(z,t; q").

— Solve (via approximation technique)
the adjoint equations backward in
time for approzimate Y™ (z,1;q™).

Then, §'(¢*) = $M(0, £ ¢™)
(since pM(z,t;¢") = ¥ (z,t; "))

¢ Update ¢"*1(¢) = ¢(¢)+a"p™(t), where
pr(t) = —¢M(0,4;¢") = —S5"(¢™)(t)
is used. At this step, the parameter
g™t is discretized (e.g., M-dimensional).

Clearly, the two approaches are not equivalent. Hopefully, however, as p — oo and
M = oo, the same optimal functional parameter, ¢* = ¢*(t), is reached.




Regularizing Fit-to-Data Criteria

Suppose that a regularizing term is added to S(q), e.g., for given (fixed) § > 0, we have
the zero*® order regularizing criterion

2/tmx T(d,t;q)|2 dt + 2/ ()2 dt,

or, the first order regularizing criterion

@ =1 [V O-T@ 50+ 3 [ [la@P + g0 d

Then we may still implement infinite dimensional descent methods for minimizing Ss(q).

The zero® order regularization is straightforward:
g g

o Pick ¢°(¢) and define the iteration ¢"*!(t) = ¢™(t) + a™p™(t), where the formulas for
o™ and p" are analogous to those given before, requiring now S§(¢™).

e Computation of Si(g) for any ¢:

— Compute S5(¢+Aq)—Ss5(q) (where ¢ and Ag are given functions in L3(0, tmax)) and
drop terms nonlinear in Aq. What remains is the directional derivative DagSs(q).

— Where, for the non-regularized problem, we had

D,S@ = [ ()~ T(d,t0) (~Du,T(d1) dt

resiéua,l ~ directional
derivative
of T at ¢
tmax
= / (0,15 9)Aq(2) dt,
0 Nl
S'(q)

(% the solution of the adjoint equations), we now have

DagSi(a) = ["(Y() = T(d,t 0)) (~Da, T(d 1) dt

residual directional
derivative
of T at ¢

tmax

+ 8 [ a0 a0 de
reg. ‘term
tmax
= [T B0.59) + Sa@)}Aa(t) di
S5(a)




It follows that
S5(9)(2) = (0, q) + 8q(2).

e Thus, for the (n + 1)t iterate, ¢g"+1(t) = ¢"(t) + a™p"(t), we perform the following:
— Solve the IHCP equations forward in time and compute the residual
Y(t)-T(d,t;q").
— Solve the usual adjoint equations (with jump condition given by Y (¢)—T'(d, t; ¢"))
backward in time for ¥(z, t; ¢™).

Then :
p"(t) = =S5(g")(t) = —[4(0, £ ¢") + 8¢™(¢)]-

For the first order regularizing criterion,

S(0) = 3 [T - T saPd+ 5 [ [a@F + eGP b,

we are actually minimizing S5(g) over a new parameter space. Where before ¢ belonged
to L3(0,%tmax) (the square-integrable functions), now ¢ must have a square-integrable first
derivative; i.e., we take ¢ in W12(0, tmax) (the square-integrable functions which have square-

integrable derivatives).
Additionally, where before for L3(0, tmax) We had the scalar product

(od) = [ e d,

we must define for W2(0, tmax) a new scalar product which takes into account the new
derivative information about ¢. In this case we define the scalar product by

(08 = [ a0 + 00 dt.

This change in scalar product leads to a new complications in defining Sj(g).




Before, we rewrote the directional derivative as
DpgSs(q) = (“function of 7, Agq)
= /0 tmx(“function of t7)-Aq(2) dt.
and identified (via definition of the adjoint 1)
Si(q) = “function of t” = 9(0,t; ¢) + 6¢(¢).
Now we must rewrite the directional derivative as
Dp,Ss(q) = (“function of t,Ag) _
= /Otmax [ (“function of t7)-Agq(t) + (“same function of t”)-(Aq)'(t)] dt
and, once this is done, identify
Si(¢q) = “function of t”.

We may show, for the first order regularization criterion, that

DagSi(a) = [ ") ~ Tdyt50)) (~Da,T(d: 1) dt+5 [ a(0)-Aa(e) + 4(8)- (M) (1) d

~-

directional reg. term
derivative
of T at ¢

_ /Otmxd)(o’t; - Aqt)dt + /Otmx [6q(t)-Aq(t) + §¢'(2)-Ag'(t)] dt.

residual

Suppose we could find some function p = p(t) in WhH2(0, tmax) such that, from the last
equality,

tma.x

¥(0,ti0)-Aq(t)dt = [ " [o(t)- Aa(t) + '(8)- (M) (B)] d.

‘We could then identify S{(q) with p + 8¢, a function of ¢.
To construct such a p, we first note that we may integrate by parts in the last equality
above and obtain

L7 s + p0)-(aaywi de = [ plt) Ag(e)at
0/ () A (tns) = P(0)-2g(0) = [ p(0)-Aq(r)
= 0/ (tmne) ltmas) = £(0)- Da(0) + [ [=6(8) + p(8)]-Ag(?)

Therefore, we select p such that it satisfies the following two-point boundary value prob-
lem, ' .

PI(O) = Pl(tmaX) =0,

9




and thus find that

DAqS&(‘Z)

1l

/otm,.x [($(0,t; ¢) + 69(t)) Aq(t) + 6¢'()(Aq)(8)] dt

_ /Otmax {[p(t) + 6q(t)]'AQ(t) + [p(t) + 5Q(t)]’(t)(AQ)/(t)} dt
as needed. It follows that
Si) = o+ b2,

a function of £.

Thus, for the first order regularization criterion, we add a fourth equation that must be
solved at each iterate of our parameter value, namely the two-point boundary value problem
for p. The equations in p are solved after the adjoint equations are solved.

Final Comment on First Order Regularization:
Because the scalar product changes, the norm || - || used in the (Steepest Descent) formula
for a™ also changes. Now we must compute

o717 = [ o + 1Y )P dt.
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